СУРАЙКИН А. И., ФЕДОТОВ Е. Н. БЫСТРОДЕЙСТВУЮЩИЕ ВЫСОКОВОЛЬТНЫЕ GAAS ДИОДЫ ДЛЯ СИЛОВОЙ ЭЛЕКТРОНИКИ

Аннотация. В статье приводятся результаты исследования относительно нового класса полупроводниковых приборов – быстродействующих высоковольтных *GaAs p-i-n-*диодов для высокоэффективной силовой электроники. Приводятся общие технические требования к быстродействующим высоковольтным *GaAs p-i-n-*диодам, а также основные электрические параметры и характеристики экспериментальных образцов *GaAs p-i-n-*диодов.

Ключевые слова: силовой диод, *p-i-n*-структура, максимальный прямой ток, максимальное обратное напряжение, время обратного восстановления.

SURAYKIN A. I., FEDOTOV E. N.

HIGH-SPEED AND HIGH-VOLTAGE GAAS DIODES FOR POWER ELECTRONICS

Abstract. The article presents the research results of relatively new semiconductor devices – high-speed and high-voltage *GaAs p-i-n*-diodes for high-performance power electronics. The authors consider the general technical requirements for high-speed and high-voltage *GaAs p-i-n*-diodes as well as the basic electrical characteristics of experimental *GaAs p-i-n*-diodes.

Key words: power diode, *p-i-n*-structure, maximal forward current, maximal reverse voltage, reverse recovery time.

Инновации в энергетике имеют для России исключительное значение. Но, к сожалению, развитие электронной компонентной базы (ЭКБ) силовой электроники на сегодняшний день недостаточно [1, с. 15–19]. Решение данной задачи вполне возможно с помощью высоких технологий, В данном случае через энергоэффективную ЭКБ преобразовательную технику, основу которой составляет на широкозонных полупроводниках.

Одно из направлений развития ЭКБ силовой электроники – высоковольтные быстродействующие переключающие диоды на основе многослойных *GaAs* эпитаксиальных *p-i-n*-структур, изготовленных комбинацией методов жидкофазной (ЖФЭ) и газофазной (ГФЭ) эпитаксий [2, с. 36–47]. Достоинства *GaAs p-i-n*-диодов можно кратко перечислить: высокая скорость переключения; высокая рабочая температура; высокая радиационная стойкость; минимизированная емкость; малый заряд обратного восстановления; высокие частоты коммутации; высокая динамическая устойчивость; слабая зависимость заряда восстановления, времени обратного восстановления и обратного тока восстановления от температуры.

1

Ряд российских предприятий освоил технологию производства многослойных эпитаксиальных *GaAs*-структур и, соответственно, *p-i-n*-диодов на их основе [3, с. 16–19]. Исследование таких диодов относительно идентификации их важнейших параметров с целью определения возможности применения таких диодов в электронной технике является достаточно актуальной задачей. Структура кристалла *GaAs p-i-n*-диода приведена на рисунке 1.

Рис. 1. Структура кристалла *GaAs p-i-n*-диода (A – катод, B – n⁺, C – *p-i-n*-область, D – анод).

Указанная структура, как говорилось ранее, выращивается методами ЖФЭ и ГФЭ. Полученные эпитаксиальные *p-i-n*-структуры имеют металлургические переходы внутри *i*-эпитаксиальной области. В зависимости от разностной концентрации носителей заряда величина диффузионной длины электронов L_n находится в пределах от 15 до 60 *мкм*, так, при значениях легирующей примеси ~8·10¹⁵*см*⁻³ – L_n ~35 *мкм*, время жизни составляло 130 *нс*; для концентраций 10¹⁴ *см*⁻³ L_n ~60 *мкм*, а τ_n ~ 360 *нс*.

Физическая структура и распределение концентрации в *p-i-n*-диоде приведена на рисунке 2. Если принять общую протяженность базовых областей *GaAs p-i-n*-диода такой, как показано на рисунке 2, то на переходах x_{j1} , x_{j2} , x_{j3} , x_{j4} возникают диффузионные потенциалы, сумма которых дает полное диффузионное напряжение на диоде при *T*=300 *K*:

$$U_{p-i-n} = U_{pE} + U_p + U_n + U_{nE} = 1,3B.$$
(1)

Для GaAs p^+ -p-i-n- n^+ -структуры, BAX будет отличной (по крайней мере, в части коэффициента неидеальности) от кремниевого p-i-n-диода. Рассчитаем характеристику такой структуры. В отличие от кремниевой, в GaAs p^+ -p-i-n- n^+ -структуре, учитывая размеры i - области и время жизни носителей заряда в ней, мы не можем пренебрегать падением напряжения на i-области – $U_{\rm mi}$, которое сопоставимо с напряжениями на других областях GaAs p^+ -p-i-n- n^+ -структуры (рисунок 2).

Рис. 2. Распределение концентрации носителей заряда в *p-i-n* -диоде.

Предположим, что структура симметричная: N_{AE}=N_{DE}, N_A=N_D. Из условия симметрии можно записать:

$$U_{p+} \approx U_{n+}, < U_{mp} \approx U_{mn}.$$
⁽²⁾

Пренебрегая падениями напряжений на высоколегированных областях U_{p+} и U_{n+} , падение напряжение на всей диодной структуре можно записать в виде (3):

$$U_{s} = U_{1} + U_{2} + U_{mp} + U_{mi} + U_{3} + U_{mn} + U_{4}.$$
 (3)

Учитывая (3), согласно [4, с. 82–88], расчетная прямая ветвь *BAX GaAs p-i-n*-диода будет такой:

$$I = I_s \left[\exp\left(\frac{U_s}{4\varphi_T}\right) - 1 \right], \tag{4}$$

где $I_s=qn_iSW/\tau_n$ – ток насыщения диода, m=4 – коэффициент неидеальности p-i-n – структуры, U_s – напряжение, приложенное к p-i-n-диоду.

На экспериментальных образцах диодов в количестве 20 шт., было проведено исследование прямой и обратной ветвей BAX, а также проведено измерение времени обратного восстановления. Усреднненная прямая ветвь BAX при T=300 K приведена на рисунке 3.

Рис. 3. Прямая ветвь *BAX GaAs p-i-n*-диодов.

Согласно полученным экспериментальным данным, был уточнен коэффициент неидеальности *p-i-n*-диода. Записывая соотношение (4) в виде:

$$\ln(\frac{I}{I_s}+1) = \frac{1}{m} \cdot \frac{U_s}{\varphi_T},$$
(5)

мы получим уравнение прямой в координатах $ln(I/I_s-1) - U_s/\varphi_T$, у которой тангенс угла наклона равен 1/m ($tg(\alpha)=1/m$). С учетом вычисленного значения коэффициента неидеальности (m=2,23), прямая ветвь *BAX* будет записана следующим образом:

$$I = I_{s} [\exp(\frac{U_{s}}{2,23\varphi_{T}}) - 1],$$
(6)

где I_s – ток насыщения, составил величину – I_s =3,2·10⁻¹⁰ A.

Исследование обратной ветви *BAX* проводилось в диапазоне температур от 25° C до 250° C и показало, что зависимость обратного напряжения от температуры не приводит к увеличению тока более 1 *мA* (рисунок 4). При этом напряжение лавинного пробоя [5, с.103–117] достаточно стабильно и не ниже 800 *B*. То есть, в диапазоне 25–250° C обратное напряжение практически не снижается.

Анализ измеренных значений времени обратного восстановления t_{RR} экспериментальных образцов *GaAs p-i-n-*диодов [5, c.117–119] показывает, что среднее значение данной величины – t_{RR} =54,5 *нс* (см. таблица 1). Полученное значение вполне приемлемо для использования диодов в быстродействующей электронике. Отметим лишь то, что на подобных структурах возможно получение времени обратного восстановления менее 10*нс* ($t_{RR} \le 10 \ hc$). Но это комплексная задача, включающая как оптимизацию физической

структуры кристалла *GaAs p-i-n*-диода, так и решение сложных задач разработки технологических процессов.

Рис. 4. Зависимость обратного тока диодов от обратного напряжения для различных температур.

Таблица 1

Время обратного восстановления экспериментальных образцов диодов

Номер диода	1	2	3	4	5	6	7	8	9	10
t _{RR} , HC	80	60	50	50	50	60	50	40	50	40

Продолжение таблицы 1

Номер	11	12	13	14	15	16	17	18	19	20	Cn
диода	11	12	15	17	15	10	17	10	17	20	Cp.
top 11C	50	40	60	60	50	50	50	80	50	70	54.5
$i_{\rm RR}, \pi c$	50	-0	00	00	50	50	50	00	50	70	54.5

На основании полученных данных можно сделать вывод о том, что статические и динамические характеристики GaAs *p-i-n-*диодов вполне позволяют использовать их в быстродействующих устройствах электронной техники.

ЛИТЕРАТУРА

- 1. Войтович В., Гордеев А., Думаневич А. Чем заменить SiC-диоды Шоттки? // Силовая электроника. 2009. № 5. С. 15–19.
- Кесаманлы Ф. П., Наследова Д. Н. Арсенид галлия. Получение, свойства, применение. М.: Наука, 1973. – 471 с.
- 3. Войтович В., Гордеев А., Думаневич А. Новые отечественные высоковольтные p-i-n-GaAsдиоды // Силовая электроника. – 2010. – № 2. – С. 16–19.
- 4. Герлах В. Тиристоры / пер. с нем. М.: Энергоатомиздат, 1985. 328 с.
- 5. Зи С. Физика полупроводниковых приборов: В 2-х кн. Кн. 1. / пер. с англ. 2-е изд., перераб. и доп. М.: Мир, 1984. 456 с.